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Causal implications of viscous damping in compressible fluid flows
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Classically, a compressible, isothermal, viscous fluid is regarded as a mathematical continuum and its
motion is governed by the linearized continuity, Navier-Stokes, and state equations. Unfortunately, solutions of
this system are of a diffusive nature and hence do not satisfy causality. However, in the case of a half-space of
fluid set to motion by a harmonically vibrating plate the classical equation of motion can, under suitable
conditions, be approximated by the damped wave equation. Since this equation is hyperbolic, the resulting
solutions satisfy causal requirements. In this work the Laplace transform and other analytical and numerical
tools are used to investigate this apparent contradiction. To this end the exact solutions, as well as their special
and limiting cases, are found and compared for the two models. The effects of the physical parameters on the
solutions and associated quantities are also studied. It is shown that propagating wave fronts are only possible
under the hyperbolic model and that the concept of phase speed has different meanings in the two formulations.
In addition, discontinuities and shock waves are noted and a physical system is modeled under both formula-
tions. Overall, it is shown that the hyperbolic form gives a more realistic description of the physical problem
than does the classical theory. Lastly, a simple mechanical analog is given and connections to viscoelastic
fluids are noted. In particular, the research presented here supports the notion that linear compressible, iso-
thermal, viscous fluids can, at least in terms of causality, be better characterized as a type of viscoelastic fluid.

PACS number~s!: 47.40.2x, 02.30.Jr, 43.20.1g, 47.10.1g
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I. INTRODUCTION

In the classical theory of fluids, the propagation of sma
amplitude longitudinal waves in a compressible, isotherm
viscous fluid is governed by the linearized continui
Navier-Stokes, and state equations~see Kinsleret al. @1#!

]p

]t
1r0c2

“•v50, ~1.1!

r0

]v

]t
52“p1S 4m

3
1hBD“~“•v!, ~1.2!

p5c2~r2r0!, ~1.3!

where v is the velocity vector,p is the pressure,r is the
density, the constantsm,hB ,r0 ,c.0 are the shear viscosity
bulk viscosity, ambient density, and sound speed, resp
tively, and of course the flow is irrotational~i.e., “3v50!.
Guided by Kinsleret al. @1#, and using the well-known tools
of vector calculus, the above system can be written as
third-order partial differential equation~PDE!

c2¹2u2
]2u

]t2
1

4m

3r0

]~¹2u!

]t
50, ~1.4!

whereu is a component ofv and the Stokes assumption~i.e.,
hB50! has been made. Initial-boundary value proble
~IBVP’s! involving the one-dimensional form of this equ
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tion have been solved and analyzed by Blackstock@2# and
Norwood @3#. It is of interest to note that in its one-~two-!
dimensional form Eq.~1.4! is, with the appropriate coeffi-
cients, the equation of motion of a string~membrane! with
internal damping@4# and also describes the motion of a vi
coelastic fluid under the Kelvin-Voit body model@5#.

Now, consider the case of an initially quiescent half-spa
of fluid set to motion by an infinite, harmonically vibratin
bounding plate~i.e., the compressible fluid analogy of th
transient form of Stokes’s second problem@6#!. We ob-
serve that for sufficiently larget.0 @more precisely
t@4m/(3r0c2), see Sec. III D#, the time dependence ofu
will be ~approximately! solely of the formeivt, where v
.0 is the constant vibration frequency of the bounding pla
Thus we have

¹2u'2
v2

c2 S u

114ivm/~3m0c2!
D . ~1.5a!

Moreover, for many fluids~e.g., air, water! the coefficient of
the mixed derivative damping term in Eq.~1.4! is a very
small quantity. Hence, following McLachlan@7#, we can re-
gard the mixed derivative term in Eq.~1.4! as a sink and, so
as to obtain a wave equation with an alternate form of dam
ing while maintaining a well-posed IBVP, approximate on
its Laplacian part, whenv!3r0c2/(4m) ~a condition easily
satisfied in most, if not all, classical fluids over virtually th
entire frequency spectrum of acoustical applications!, by

¹2u'2
v2

c2
u. ~1.5b!

Using Eq.~1.5b!, Eq. ~1.4! becomes approximately
ic
7918 ©2000 The American Physical Society
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c2¹2u2
]2u

]t2
2

4mv2

3r0c2

]u

]t
50, ~1.6!

wherec is now identified as the phase speed. Equation~1.6!,
a hyperbolic PDE, is a special case of the telegraph equa
known as the damped wave equation. As is well known,
equation describes a vast array of physical systems. For
ample, the damped wave equation governs the propaga
of ‘‘second sound’’~i.e., thermal waves! in a thermally con-
ducting medium where the heat flux vector is given by
Maxwell-Cattaneo equation@8#, the propagation of electro
magnetic waves in an electrically conducting medium~see,
e.g., Born and Wolf@9#!, the migration dynamics of fish
schools@10#, the random walk problem@11#, the motion of a
string or membrane with external damping~see, e.g., Morse
and Feshbach@12#!, and it is the equation of motion of
viscoelastic fluid under the Maxwell body theory@5#.

In this work we demonstrate, as was noted earlier
Blackstok@2#, that solutions of the classical equation of m
tion for this problem do not satisfy causality@13#. We also
consider solutions of the approximate hyperbolic formulat
of the problem as alternatives that do satisfy casualty. In
effort to resolve this contradiction and to provide a dee
physical insight into this problem we present the followin
A comparative study of the one-dimensional form of the
two models@i.e., the classical model corresponding to E
~1.4! and the approximate hyperbolic formulation describ
by Eq. ~1.6!#, an examination of their special and/or limitin
cases, and a study of the roles of the various quantitie
interest~e.g., the constantc has different physical interpreta
tions in the two formulations!. In effect, we show that the
approximate hyperbolic form gives an overall more realis
description of the physical problem than does the class
theory. Moreover, we also point out that the hyperbolic f
mulation of the problem actually suggests that classical
ids described in this work are, at least in terms of causa
better modeled as viscoelastic fluids of the Maxwell type

To this end, we present in Sec. II the exact solutions
both the classical and hyperbolic formulations found us
the temporal Laplace transform. In Sec. III we present a
riety of analytical results: a number of special and/or limiti
cases are considered, several associated physical quan
are given, and a~possible! new definite integral, found ser
endipitously in the course of this investigation, is present
Section IV contains numerical results for various values
the time and solution parameters, as well as for some of
associated physical quantities, and a physical system is
sidered. Finally, in Sec. V conclusions are given followed
a brief discussion which, in addition to presenting a sim
mechanical analog, highlights the connection between c
sical and the viscoelastic fluids.

II. MATHEMATICAL ANALYSIS

Taking the positivez axis of a Cartesian coordinate sy
tem in the upward direction, let a compressible fluid occu
the half-spacex.0 adjacent to a flat plate in theyz plane.
Initially, both the plate and fluid are at rest. At timet501 a
flow is induced by the vibration of the plate along thex axis
on
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with velocity U0 cos(vt) or U0 sin(vt), whereU0 is a con-
stant. Under these conditions, no flow occurs in they andz
directions and the flow velocity at a given point in the flu
depends only on thex coordinate of the point and the timet.
We model the above physical system with the following on
dimensional IBVP:

c2
]2u

]x2
2

]2u

]t2
1a2

]3u

]x2]t
50, a.0, x,t.0

c2
]2u

]x2
2

]2u

]t2
2r

]u

]t
50, r .0, x,t.0, ~2.1!

u~0,t !5g~ t !, u~`,t !50, t.0, ~2.2!

u~x,0!5ut~x,0!50, x.0, ~2.3!

where the velocity vector is given byv5„u(x,t),0,0…,
g(t) ~[0 for t,0! takes on the value ofU0 cos(vt) or
U0 sin(vt), and to simplify the notation we have seta2

[4m/(3r0) and r[4mv2/(3r0c2). Applying the temporal
Laplace transformL@•# and solving the resulting ordinar
differential equation yields the transform domain solution

ū~x,s!5L@g~ t !#35 expS 2
x

c
A s2

11s/ l 2D , a.0

expS 2
x

c
As~s1r ! D , r .0,

~2.4!

where

L@g~ t !#5U035
s

s21v2
, g~ t !5U0 cos~vt !,

v

s21v2
, g~ t !5U0 sin~vt !,

~2.5!

l 2[(c2/a2)53r0c2/(4m), s is the complex transform pa
rameter, andū[L@u#. Since ther .0 solution can be easily
extracted from thek,0 case of Eq.~2.7! of Ref. @14# @on
setting b50 and F(t)5g(t)#, we simply give it below.
Here, we derive only thext-domain solution for thea.0
case of Eq.~2.4!. To this end we note that Eq.~2.4! possesses
simple poles ats56 iv and has a branch point ats52 l 2.
Having found the singularities, we can now employ t
Laplace inversion formula~see, e.g., Churchill@15#!. Thus,
on integrating along the Bromwich contourG ~see Fig. 1! in
the counterclockwise direction, taking the limitse→01 and
R→`, and employing the residue theorem@15# we obtain
the complete, exact,xt-domain solution
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u~x,t !5u~ t !35 35 e2a1xg~ t2a2x/v!2
U0

p E
l 2

` he2th sin@xh~h!#dh

h21v2
, g~ t !5U0 cos~vt !, a.0,

e2a1xg~ t2a2x/v!1
vU0

p E
l 2

` e2th sin@xh~h!#dh

h21v2
, g~ t !5U0 sin~vt !, a.0

u~ t2x/c!S e2rx/~2c!g~ t2x/c!1rxE
x/c

t

g~ t2z!K~x,z!dz D , r .0,

~2.6!

FIG. 1. Bromwich contourG used in the inversion of thea.0 case of Eq.~2.4!.
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whereu~•! is the Heaviside unit step function,

h~h!5
h

cAn/ l 221
, a1,25

v

c
A711A11v2/ l 4

2~11v2/ l 4!
,

~2.7!

K~x,z!5
e2r z/2

2c S I 1@~r /2!A~z22x2/c2!#

Az22x2/c2 D , ~2.8!

and whereI n@ # denotes the modified Bessel function of t
first kind of ordern.

III. ANALYTICAL RESULTS

In this section we examine the behavior of Eq.~2.6! using
analytical techniques. Both small and large time solutions
 re

given. In addition, we derive the relevant wave paramet
that characterize the behavior of the solution for large val
of time. We also examine the curve structure and determ
the amplitudes of the jump discontinuities occurring inu and
its first derivatives for the case ofr .0. Moreover, we note
several important aspects of solution~2.6! and we call atten-
tion to several of its special and/or limiting cases. Lastly,
present a possible new definite integral found during
course of this research.

A. Small-time behavior

Expanding the transform domain solution@Eq. ~2.4!# for
larges and then inverting gives us small-time expressions
Eq. ~2.6!. Thus, fora.0 the small-time solutions are give
by ~see also Refs.@2,3#!
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u~x,t !'U0u~ t !3H Pc~x!erfc@x/2aAt#1Qc~x!At/pe2x2/~4a2t !, g~ t !5U0 cos~vt !

Ps~x,t !erfc@x/2aAt#2Qs~x,t !At/pe2x2/~4a2t !, g~ t !5U0 sin~vt !,
~3.1!
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where erfc@•# is the complementary error function@15#,
x2a22!t!Min@v21,l 22#, and

Pc~x!512
l 2x2

2a2
, ~3.1a!

Ps~x,t !5vS t2
l 2x2t

4a2
1

x2

2a2D , ~3.1b!

Qc~x!5
l 2x

a
, ~3.1c!

Qs~x,t !5vS x

a
2

2l 2xt

3a D . ~3.1d!

For r .0 the small-time solutions are@14#

u~x,t !'U0e2rx/~2c!u~ t2x/c!

3H 11r 2x~ t2x/c!/~8c!, g~ t !5U0 cos~vt !

v~ t2x/c!, g~ t !5U0 sin~vt !,

~3.2!

where forxc21,t!Min@v21,r 21#. The advantage of Eqs
~3.1! and ~3.2! over Eq. ~2.6! is that they can be obtaine
without the need of contour integration and they are mu
easier to implement numerically. In addition, they give
insight into the behavior of the transient terms. From E
~3.1! we see that the small-time behavior will always be o
diffusive character fora.0. In addition we see that for ever
t.0, the Heaviside function on the right-hand side of E
~3.1! is always unity, indicating that the vibrations occurrin
at the x50 boundary are felt instantly, but not equall
throughout the entire half space. In contrast, Eq.~3.2! shows
that for r .0 we have an exponentially damped disturban
propagating in the positivex direction ~i.e., away from the
plate! with speedc. Finally, we see from Eqs.~3.1! and~3.2!
that for g(t)5U0 cos(vt), u is independent ofv under
small-t conditions.

TABLE I. Propagating discontinuities inu, ut , andux .

Case a.0 r .0
Wave front x5ct x5ct

g(t) U0 cos(vt) U0 sin(vt) U0 cos(vt) U0 sin(vt)
S@u# 0 0 U0e2rx/2 0
S@ut# 0 0 ` vU0e2rx/2

S@ux# 0 0 ` 2cvU0e2rx/2
h

.

.

e

B. Discontinuities

In Table I we have listed the amplitudes of the propag
ing jump discontinuities inu and its first derivatives, as de
termined using the methods employed by Jordan and
@14#. Here S@ #, the saltus operator, denotes the jump in
quantity across the planex5ct ~see Ref.@14#!. From Table I
we see that within the solution domain~i.e., x,t.0!, u and
its first derivatives are continuous for the casea.0. Further-
more, it can be easily shown thatu is infinitely differentiable
with respect to bothx and t @i.e., uPC`(x,t.0)# for all
admissibleg anda.0 ~see Ref.@14#!.

For r .0 andg(t)5U0 sin(vt), u is again a continuous
function within its solution domain. However, bothux and
ut , the first spatial and temporal derivatives ofu, respec-
tively, each suffer a finite jump discontinuity across t
planex5ct. Henceu is only of classC0 and thus it follows
that u has a corner onx5ct. In contrast, takingg(t)
5U0 cos(vt), again forr .0, results inu itself experiencing
a jump discontinuity acrossx5ct. Physically, of course, this
plane represents the wave front. Technically, in the hyp
bolic case, the planex5ct is known as a shock wave, or
singular surface of order zero, forg(t)5U0 cos(vt) while for
g(t)5U0 sin(vt) it is referred to as an acceleration wave,
a singular surface order one~see, e.g., Truesdell and Toup
@16#!. Moreover, we see that the amplitude of every fini
nonzero jump given in Table I decays exponentially ov
time ~sincex5ct at the wave front!.

In Fig. 2 we have plotted ther .0 case of Eq.~2.6! for
g(t)5U0 cos(vt) ~solid line! and g(t)5U0 sin(vt) ~bold
line!. The values of the physical parameters used corresp
to air at 0 °C and were taken from Ref.@1# @Table ~b!, p.
462#. Observe that ahead of the wave front~i.e., the half-
spacex.ct!, u[0 ~since the fluid was initially in an undis
turbed state!, behind it ~i.e., the slab 0,x,ct! lies the re-
gion of the solution domain where the effects of the inpug
have already been felt. In addition, the jump associated w
the shock wave resulting from theU0 cos(vt) boundary data

FIG. 2. u vs x for air at 0 °C with v5100.0 Hz ~giving r
51.5931026 sec21! and t50.06 sec. Bold line:g(t)5sin(vt);
solid line: g(t)5cos(vt).
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is clearly visible as well as the corner associated with
U0 sin(vt) input.

C. Displacement thickness

In classical incompressible fluid theory the displacem
thicknessd* refers to the distance from a flat plate that
o-

at

t

ce
d

an
.

l

e

t

streamline in the outer flow is displaced by the presence
viscosity and is defined as

d* ~ t !5U0
21E

0

`

u~x,t !dx. ~3.3!

In this work, however, the phrase displacement thickn
simply refers to the area under theu vs x for some fixed
t.0. Hence, from Eqs.~2.6! and ~3.3! we find
d* ~ t !5U0
21u~ t !35 aFM ~ t !1~ l 2/2!E

0

t

e2 l 2z/2M ~ t2z!$I 0~ l 2z/2!1I 1~ l 2z/2!%dzG , a.0

cF E
0

t

e2r z/2g~ t2z!I 0~r z/2!dzG , r .0,

~3.4!

where

M ~ t !5U0A2

v
3H C~A2vt/p!cos~vt !1S~A2vt/p!sin~vt !, g5U0 cos~vt !

C~A2vt/p!sin~vt !2S~A2vt/p!cos~vt !, g5U0 sin~vt !,
~3.5!
nal

e

-

and whereC( ) andS( ) are the Fresnel integrals of the c
sine and sine types, respectively. Observe that fora.0, d*
is proportional toa for any fixed positivet while for r .0,
d* is proportional toc, again for any fixed positivet.

D. Special and limiting cases

Returning to Eq.~2.6! we note that asc→01, the ~fixed!
a.0 case of Eq.~2.6! approaches the solution of the he
equation for the corresponding IBVP and, asr→01, the
r .0 case of Eq.~2.6! approachesu(t2x/c)g(t2x/c), the
solution of the undamped~or classic! wave equation for the
present IBVP. Moreover, we see that for fixedc, l→` as
a→01. Consequently, the transient~i.e., integral! terms
found in thea.0 cases of Eq.~2.6! approach zero~since
both limits of integration are approaching infinity!, a1,2
→$0, v/c%, andu(t)→u(t2x/c) @since the branch point a
s52 l 2 is tending to2` and ū(x,s) is analytic in the half-
plane Re(s).g#. Thus, as one would expect,u→u(t
2x/c)g(t2x/c) asa→01.

Clearly ast→`,u(x,t)→u`(x,t), where

u`~x,t !5e2a1xg~ t2a2x/v!, a.0. ~3.6!

In a strict sense,u`(x,t) is not the steady-state solution sin
it containst explicitly. It is, however, known as the sustaine
or quasi-steady-state solution. In Table II we list the relev
propagation parameters associated withu` ~see also Refs
@2,3#!. Here penetration depth refers to the value ofx for
which the amplitude ofu` has decreased toU0e21 and
wavelength denotes the distance between two successive
ers of fluid which vibrate in phase@17#.

Expandinga1,2 for large frequency we find

a1,2;
1

a
Av

2
, v@ l 2. ~3.7!
t

ay-

Expandinga1,2 for small frequency we find

a1'
a2v2

2c3
, a2'

v

c
, v! l 2. ~3.8!

Thus whenv is very much larger thanl 2, u` ~approxi-
mately! satisfies the classic diffusion equation. Forv! l 2,
we find that u`'e2rx/(2c)g(t2x/c), where again
r 54mv2/(3r0c2) ~i.e., for v sufficiently small,u` is ap-
proximately equal to the nonintegral part of ther .0 solu-
tion!. Thus we see, as illustrated here in the one-dimensio
case, that solutions of Eq.~1.4! for the present IBVP are
approximately equal to those of Eq.~1.6! when v! l 2 and
(xc21),t@ l 22. Furthermore, whenv is so small thatv2

can be neglected in comparison tov, u` approximates the
solution to the well-known wave equation.@Clearly so does
the r .0 case of Eq.~2.6!.# Moreover, in terms of the phas
velocity vp we have

vp;aA2v ~v@ l 2!, vp'c ~v! l 2!. ~3.9!

From the first of Eqs.~3.9! we find that the propagation
medium exhibits anomalous dispersion@18# whenv is large
compared tol 2 ~i.e., vp is an increasing function of fre
quency!. However, from the second of Eqs.~3.9! we find that

TABLE II. Propagation parameters.

Name Parameter

Attenuation coefficient a1

Penetration depth 1/a1

Wave number a2

Phase velocityvp v/a2

Wavelength 2p/a2

Phase lag a2x
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the propagation medium tends to be nondispersive whenv is
much smaller thanl 2 ~i.e., vp is a constant, independent o
frequency; the medium behaves as does free space wit
spect to electromagnetic waves@9#!. Furthermore, it should
be clear that whenr !2c/x, then the propagation medium
essentially of a nondispersive nature~implying that far away
from the plate, ther .0 solution behaves very much like th
of the classic wave equation!.

Taking g(t)5U0eivt makes u a complex quantity.
McLachlan@7# has given the complex-valued solution for th
caser .0. For a.0, the complex-valued quasi-steady-sta
solution is

U`~x,t !5U0e2a1x exp@ i ~vt2a2x!#. ~3.10!

The modulus of Eq.~3.10! is easily found to be

uU`~x,t !u5U0e2a1x. ~3.11!

Using the large and small frequency expressions gi
above, we find that

uU`~x,t !u;U0 exp@2~x/a!Av/2#, v@ l 2, ~3.12!

uU`~x,t !u'U0 exp@2x~av!2/~2c3!#, v! l 2, ~3.13!

Thus, it is clear thatuU`u is a decreasing function of fre
quency and that for a fixed value ofx and small values ofv,
it is of a Gaussian nature with respect to frequency.

FIG. 3. u vs x in nondimensional~ND! units for t5c5r 51.0
andv510.0. Bold line: hyperbolic; solid line: classical.

FIG. 4. u vs x ~ND! for t5c51.0 andv510.0. Bold line:r
510.0; solid line:r 51.0; and broken line:r 50.1.
re-

n
Last, from thea.0, g(t)5U0 sin(vt) case of Eq.~2.6!

we obtain, based on the initial conditionu(x,0)50, the inte-
gral relation

v

p E
0

` sin@x~h1 l 2!/Aha2#dh

~h1 l 2!21v2

5e2a1x sin~a2x! ~a,c.0;x,v>0!.

~3.14!

This definite integral does not appear in any reference
we are aware of@19,20#. Thus, to the best of our knowledge
the relation given in Eq.~3.14! is a new result.

IV. NUMERICAL RESULTS

Here we giveMathematica@20#-generated plots for vari-
ous values of time and the solution parameters. So a
simplify their presentation and comparison, we have, in Fi
3, 4, 5~b!, and 8, employed the following nondimension
~ND! transformations:

x8→xl2U0
21, t8→t l 2, u8→uU0

21, v8→v l 22,

c8→cU0
21, a8→c8, r 8→rl 22, ~4.1!

where in referring to these quantities the primes will be u
derstood. Moreover, with the exception of Fig. 5~a!, the val-

FIG. 5. ~a! uU`u vs x for dry air with m51.731025 Pa sec,r0

51.293 kg/m3, and v55.0 kHz. Bold line:c5361.0 m/sec; solid
line: c5331.0 m/sec; and broken line:c5301.0 m/sec. ~b! u vs x
~ND! for t50.1 andv510.0. Bold line: c510.0; solid line:c
55.0; and broken line:c50.05.
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ues employed for all physical parameters were obtained f
Ref. @1# @Table~b!, p. 462#. ~In particular, for air at 0 °C we
have m51.731025 Pa sec, r051.293 kg/m3, and c
5331.6 m/sec!. Lastly, in all dimensional figures we hav
takenU051 m/sec and, with the exceptions of Figs. 5~a!, 6,
and 8, all graphs given in this section were plotted forg(t)
5sin(vt).

A. Effects of damping coefficients

In Fig. 3 we have plotted both the hyperbolic~bold line!
and classical~solid line! solution curves forc5r 51.0 using
ND units. Clearly, the damping effects of the mixed deriv
tive term are more pronounced than those of the usual fi
order time derivative damping term occurring in the hyp
bolic equation. In Fig. 4 we show the effects of varyingr
(.0) in Eq. ~2.6!, again using ND units. As would be ex
pected, increasingr drives down the curve’s amplitude an
suppresses its oscillatory behavior.

B. Effects of the phase speed parameter and frequency

As is well known in the hyperbolic formulation the con
stantc is the phase speed~i.e., the speed at which the wav
front propagates!. However, in the classical formulationc
takes on a totally different physical meaning.~Kinsler et al.
@1# also note this point and refer toc as the thermodynamic
speed of sound in the classical case.! From Figs. 5 we see
that in the classical case,c acts like an inverse decay param
eter~i.e., increasingc beyond unity decreases the decay r

FIG. 6. uU`u vs x for air at 0 °C. Bold line:v520.0 kHz; solid
line: v510.0 kHz; and broken line:v55.0 kHz.

FIG. 7. d* vs t for air at 0 °C withv510.0 Hz. Bold broken
line: hyperbolic; solid line: classical.
m

-
t-
-

e

of the diffusive curve!. This behavior is clearly seen in th
uU`u vs thex graph shown in Fig. 5~a! which was plotted for
dry air at 50.0 °C~bold line!, 0 °C ~solid line!, and250.0 °C
~broken line! „see Pierce@21# @Eq. ~1-9.4!#…, andt large; and
in the u vs x ~ND! graph of Fig. 5~b! which was plotted for
t50.1. Furthermore, we note that the broken curve shown
Fig. 5~b!, plotted for c50.05, approximates the solutio
curve of the ND heat equation@i.e., letting c→01 in Eq.
~1.4!# for the corresponding IBVP.

In Fig. 6 we have plotted, again for air at 0 °C,uU`u
5e2xa1 vs x for v520.0 kHz ~bold line!, 10.0 kHz ~solid
line!, and 5.0 kHz~broken line!. As supported by Eqs.~3.11!
and ~3.12!, uU`u is obviously a decreasing function of fre
quency.

C. Displacement thickness and dispersion relation

Figure 7 depictsd * vs t under the classical~solid line!
and hyperbolic~bold broken line! cases. Observe that bot
curves appear to be in phase, non-negative, and nearly i
tical in amplitude.

The ND plot shown in Fig. 8 is a Brillioun diagram@18#.
The mapping of the wave number tov it depicts is known as
a dispersion relation. Geometrically, the slope of the vec
from the origin to a particular point on the curve represe
the phase velocityvp . From Fig. 8 we see that, sincevp
.0, U` is a disturbance that always propagates away fr
the plate into the fluid medium. Furthermore, it is also cle
thatvp is an increasing function ofv. Hence the propagation
medium considered here is one of anomalous dispersion

D. Physical scenario

Consider a very deep, initially queasiest, volume of oce
filling the half-spacex.0 of a Cartesian coordinate system
As a result of an undersea seismic event, a very large
section of the ocean floor~i.e., assumed to be of infinite
extent!, which occupies theyz plane, begins to suddenly ex
ecute small-amplitude vibrations of the form sin(vt) in the
vertical direction ~i.e., along thex axis! at t501. These
vibrations of the ocean floor sets the water above into m
tion. We wish to describe, for anyt.0 and neglecting gravi-
tational effects, the resulting velocity field of the water giv
that flow parallel to theyz plane~i.e., flow emanating from
the edges! will be negligibly small compared to that paralle
to thex axis, thus allowing us to takev5„u(x,t),0,0….

FIG. 8. v vs a2 ~ND! for c51.0.
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Figures 9 were generated fora254m/(3r0) and
r 54mv2/(3r0c2), where the values ofr0 , c, andm corre-
sponding to seawater at 13 °C were used@1#. The sequence
shown compares the time evolution of the hyperbolic so
tion of the above scenario to that of the classical case f
vibration frequency ofv510 Hz. Clearly, the wave fron
associated with the hyperbolic formulation is propagat
with finite speed and is attempting to ‘‘catch up’’ to th
diffusive curve. For its part, the diffusive ‘‘wave front’’ ha
instantly propagated over the entire positivex axis. It is
therefore apparent that the approximate hyperbolic form
tion suggested by McLachlan@7# is a more realistic model o
the above physical problem, in terms of causality, than is
classical formulation.

V. CLOSURE

A. Conclusions

Based on the analysis given here and the values of
parameters considered, we give the following conclusion

~1! Under the classical form of the problem (a.0),u is
always of a diffusive nature. Hence, a boundary input w
instantly, but unequally, be felt throughout the entire ha
spacex.0.

~2! Under the hyperbolic approximation of the proble
(r .0), u is always of a wavelike nature; a boundary inp
will propagate into the half-space at the finite speedc.0.

~3! The physical meaning of the constantc is different in
the two formulations. In the diffusive case it acts as an
verse decay parameter while for the hyperbolic case it is
speed at which a boundary input is propagated into the s
tion domain~i.e., the phase speed!.

~4! Under the hyperbolic formulation, forg(t)
5U0 sin(vt), u is continuous, while possessing a corner, b
ux andut both suffer finite jumps across the planex5ct. In
contrast, takingg(t)5U0 cos(vt) results inu itself experi-
encing a finite jump acrossx5ct. ~See Table I and also Fig
2.! Thus, for g(t)5U0 cos(vt) the planex5ct is a shock
wave while forg(t)5U0 sin(vt) it is an acceleration wave
@16#.

~5! For a given value of time, the displacement thickne
d * is proportional to the coefficienta for the a.0 case of
Eq. ~2.6! while for the r .0 case,d * is proportional to the
phase speedc.

~6! For v@ l 2, the diffusive sustained solutionu` takes
on the character of the solution to the heat or equat
For v! l 2, u` approximates the sustained part~i.e., non-
integral term! of the r .0 case of Eq. ~2.6! where
r 54mv2/(3r0c2), thus validating the derivation of Eq
~1.6!. Whenv is so small so thatv2 can be neglected com
pared tov, we find that bothu` and the sustained part of th
r .0 case of Eq.~2.6! behave likeg(t2x/c), a solution of
the classic wave equation.

~7! For g(t)5U0 cos(vt), both the diffusive and hyper
bolic solutions are independent ofv under small-time con-
ditions. This is not the case forg(t)5U0 sin(vt).

~8! For a.0, the propagation medium considered here
one of anomalous dispersion~see Fig. 8!. However, when
v! l 2 or 0,r !2c/x, the propagation medium behaves
essentially a nondispersive manner~i.e., as if botha and r
were negligibly small!.
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~9! The modulus of the complex diffusive sustained so
tion, uU`u, is a decreasing function ofv ~see Figs. 5!. For x
fixed andv! l 2, uU`u is of a Gaussian nature with respect
v while for v@ l 2 it approximates the corresponding solutio
of the classic diffusion equation.

B. Discussion

The analysis presented here clearly indicates that the
proximate, hyperbolic formulation of this problem clear
results in a more realistic model of this physical system th
does the classical formulation based on the linearized co
nuity, Navier-Stokes, and state equations. In particular, s
tions of the hyperbolic equation of motion clearly satis
causality; the smooth, diffusive solutions of the classi
theory do not. Also, the positive constantc is correctly asso-
ciated with the phase speed in the hyperbolic case where
the classical case it acts as an inverse decay param

FIG. 9. u vs x for r051026.0 kg/m3, c51500.0 m/sec,m50.001
Pa•sec, andv510.0 Hz. Bold, hyperbolic@r 54mv2/(3r0c2)#;
solid, classical@a254m/(3r0)#. ~a! t510216 sec, ~b! t510214

sec, and~c! t510212 sec.
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Moreover, the hyperbolic equation used here is also e
ployed in place of the well-known heat equation, which a
suffers from an infinite propagation speed defect, in h
transfer problems involving very low temperatures and
high heat flux conditions@8#. It is of interest to note that the
problem considered here has a simple mechanical analog
consists of a semi-infinite, one-dimensional string, initially
rest and laying on the positivex axis, with either internal
(a.0) or external (r .0) damping @4#. At t501 the
string’s end point atx50 begins to execute transverse osc
lations of the formg(t). From the analysis presented he
we would be forced to conclude that the oscillations induc
at x50 would be felt instantly, but unequally, at all points
an internally damped string. In contrast, for a string w
only external damping, the oscillations induced at the bou
ary would propagate along the positivex axis, away from the
planex50, at the constant~finite! speedc.

Lastly, we call attention to the following. The classic
equation of motion studied here arises from the assump
that the fluid medium~e.g., air, water! it is describing is,
mathematically, a continuum. In contrast, the hyperbo
equation is, in its many applications, derivable from discr
consideration~e.g., phonons in a thermally conducting m
dium @8#, schools of fish@10#, and random walk problem
@11#!. Note, however, as pointed out in Sec. I, that with t
appropriate coefficients both Eqs.~1.4! and ~1.6! also de-
scribe the motion of certain types of linear viscoelastic fl
s
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n

c
e

-

ids, the former being associated with the Kelvin-Voigt bo
theory while the latter results from the Maxwell body mod
@5,22#. In particular, we call attention to the fact that
damped wave equation is the exact equation of motion fo
linear Maxwellian fluid @5,22,23# ~implying that all causal
requirements are automatically satisfied in well-posed
VP’s!. Therefore, based on the analysis presented here,
can conclude that linear isothermal, compressible visc
fluids @i.e., those described by Eq.~1.4! under the classic
theory#, may be better characterized, at least in terms of c
sality, as linear viscoelastic fluids of the Maxwell typ
@5,22–25#. Furthermore, we call attention to both the the
retical and experimental results suggesting that air doe
fact possess the general characteristics of such a viscoe
fluid ~see Ref.@23#, Chap. 6 and the references therein!.
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